# 用户画像
待完善
用户画像最早是由交互设计之父Alan Cooper提出persona逐渐演化而来的,他最早提出persona的概念: Personas are a concrete representation of target users.(人物画像是目标用户的具体表现形式)。Alan Cooper指出人物画像是产品所寻找目标用户的归类化体现。为了让团队成员在研发过程中能够抛开个人喜好,将焦点关注在目标用户的动机和行为上。
Cooper同时也指出,不能为超过3个以上的用户画像设计产品,否则相互冲突的需求就会让我们难以决断。当我们有多个用户画像时,我们需要考虑用户画像的优先级,在产品设计时,首先考虑满足首要用户画像的需求,然后在不冲突的情况下尽量满足次要用户画像的需求。当然,当一个产品非常复杂时,我们可能需要针对不同的模块来考虑其用户画像的优先级,比如,一个综合购物网站中,某个女性角色在女装版块是首要用户画像,但是在男装版块上就成了次要用户画像了。
最佳做法是在产品研发的初期就进行细致的调研并创建产品的用户画像,然而,在实际操作中,很多时候大家可能会觉得某个产品可以做就去做了,产品推出之后发现实际的用户与先前设想的用户存在比较大的偏差,而基于先前设想的用户所设计的产品架构却很难承载实际用户的需求。此时首要工作仍然是定义好产品的目标用户。
# 用户画像的PERSONA七要素
P代表基本性(Primary):指该用户角色是否基于对真实用户的情景访谈;
E代表同理性(Empathy):指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引同理心;
R代表真实性(Realistic):指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物;
S代表独特性(Singular):每个用户是否是独特的,彼此很少有相似性;
O代表目标性(Objectives):该用户角色是否包含与产品相关的高层次目标,是否包含关键词来描述该目标;
N代表数量性(Number):用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色;
A代表应用性(Applicable):设计团队是否能使用用户角色作为一种实用工具进行设计决策。
# 数据用户画像的用途
精准营销
这是运营最熟悉的玩法,从粗放式到精细化,将用户群体切割成更细的粒度,辅以短信、推送、邮件、活动等手段,驱以关怀、挽回、激励等策略。这样就避免了全量投放造成的浪费,而且可以针对某次活动的拉新用户进行分析,评估活动效果,看是否和预期相符。
数据应用
用户画像是很多数据产品的基础,诸如耳熟能详的推荐系统广告系统。操作过各大广告投放系统的同学想必都清楚,广告投放基于一系列人口统计相关的标签,性别、年龄、学历、兴趣偏好、手机等等。 比如:电商网站为准妈妈推荐婴儿用品,为摄影爱好者推荐镜头。在个性化推荐中,计算出用户标签是其中一环,还需要有协同过滤等推荐算法实现物品的推荐。 精准广告可以根据年龄、区域、人群、天气、游戏爱好、内容偏好、购物行为、搜索行为等定向选择进行投放。例如腾讯的广点通,支持用户在微信、QQ精准投放。
数据分析
这个就不用多提了,用户画像可以理解为业务层面的数据仓库,各类标签是多维分析的天然要素,数据查询平台会和这些数据打通。
产品设计
产品方面,它用于辅助产品设计,评价需求是否有价值。把用户进行分群,依据不同用户群特性就行产品设计和测试验证,别让产品偏离核心用户的需求。
匹配度判断
查看某次市场推广的用户画像,事后分析是否和预期一致,判断推广渠道和产品目标用户群的匹配度。
用户分析
产品早期,PM们通过用户调研和访谈的形式了解用户。在产品用户量扩大后,调研的效用降低,这时候会辅以用户画像配合研究。新增的用户有什么特征,核心用户的属性是否变化等等。
# 用户画像的优点
用户画像可以使产品的服务对象更加聚焦,更加的专注。在行业里,我们经常看到这样一种现象:做一个产品,期望目标用户能涵盖所有人,男人女人、老人小孩、专家小白、文青屌丝...... 通常这样的产品会走向消亡,因为每一个产品都是为特定目标群的共同标准而服务的,当目标群的基数越大,这个标准就越低。换言之, 如果这个产品是适合每一个人的,那么其实它是为最低的标准服务的,这样的产品要么毫无特色,要么过于简陋。纵览成功的产品案例,他们服务的目标用户通常都非常清晰,特征明显,体现在产品上就是专注、极致,能解决核心问题。比如苹果的产品,一直都为有态度、追求品质、特立独行的人群服务,赢得了很好的用户口碑及市场份额。又比如豆瓣,专注文艺事业十多年,只为文艺青年服务,用户粘性非常高,文艺青年在这里能找到知音,找到归宿。所以,给特定群体提供专注的服务,远比给广泛人群提供低标准的服务更接近成功。其次,用户画像可以在一定程度上避免产品设计人员草率的代表用户。代替用户发声是在产品设计中常出现的现象,产品设计人员经常不自觉的认为用户的期望跟他们是一致的,并且还总打着“为用户服务”的旗号。这样的后果往往是:我们精心设计的服务,用户并不买账,甚至觉得很糟糕。
Google Buzz在问世之前,曾做过近两万人的用户测试,可这些人都是Google自家的员工,测试中他们对于Buzz的很多功能都表示肯定,使用起来也非常流畅。但当产品真正推出之后,却意外收到海量来自实际用户的抱怨。所以,我们需要正确的使用用户画像,小心的找准自己的立足点和发力方向,真切的从用户角度出发,剖析核心诉求,筛除产品设计团队自以为是、并扣以“用户”的伪需求。
最后,用户画像还可以提高决策效率。在现在的产品设计流程中,各个环节的参与者非常多,分歧总是不可避免,决策效率无疑影响着项目的进度。而用户画像是来自于对目标用户的研究,当所有参与产品的人都基于一致的用户进行讨论和决策,就很容易约束各方能保持在同一个大方向上,提高决策的效率。
——《论语》